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Abstract 

Cogitating the reliability of the supply and ensuring continuous delivery of power to the loads, especially in the growing demand 

for Lithium-Ion batteries in electric vehicle applications, prediction of the remaining useful life of Lithium-Ion batteries is crucial 

for the timely replacement. For prediction of non-linear and chaotic relationship, experience-based approach, physics-based 

approach and data driven approach are used among which data driven approach is a model free, accurate and reliable approach. 

Therefore, a driven approach in predicting remaining useful life can be implemented in the battery management system. This 

research uses a multilayer perceptron to predict the remaining useful life of the battery. The NASA Ames Prognostics Center of 

Excellence (PCoE) battery dataset is used to test the proposed methodology. The use of multilayer perceptron for remaining life 

prediction seems promising despite the significant number of jump points, gaps in data and a small quantity of experimental data 

in the National Aeronautics and Space Administration (NASA) dataset. The predicted result was obtained with 8.52 % mean 

absolute error and 9.59 % root mean square error. When compared with the predicted results of different literatures, proposed 

multilayer perceptron with sliding window approach outperforms most of the existing approach. Incorporation of optimization 

techniques and hybrid algorithm in proposed approach can further enhance the accuracy of the model.  

Keywords 

Lithium-Ion Battery, Multilayer Perceptron (MLP), Charge-Discharge Cycle, Remaining Useful Life (RUL),  

Depth of Discharge (DOD) 

 

1. Introduction 

Use of Lithium-ion battery has outnumbered the usage of 

lead-acid batteries due to the numerous merits in terms of 

technical aspects such as fast rate of charging, wide operating 

temperature range, lightweight, high-energy density, high 

galvanic potential, longer service life, emission-free, high 

efficiency, less maintenance costs and high Depth of 
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Dis-charge (DoD) [1-4]. Almost all the industrial energy 

supply areas extensively use this storage technology [5]. The 

major demerit of Lithium-ion batteries, when compared with 

Lead-acid batteries, underlies the high investment cost. 

However, due to the degradation and deterioration of pole 

materials, electrolyte changes, and ageing factors, the 

dis-charge capacity gradually deteriorates over time in the 

long run [6]. The application areas of Lithium-ion batteries 

are not limited to and range from cell phones, laptops, mobile 

electronics, and other electronic goods, communications, 

electric vehicles, transportation, power backup like Uninter-

ruptible Power Supply (UPS), energy storage systems, mili-

tary, to aerospace applications [7-11]. Lithium-ion battery 

applications range from mobile electronics, electric vehicles, 

and military to aerospace applications [12]. Considering 

various energy storage technologies, one of the typical energy 

storage components in life is a lithium-ion battery [13]. 

Lithium-ion batteries are the primary energy sources for ma-

jor complex electrical and electronic systems [14]. Estimating 

the remaining useful life of the battery is one of the significant 

counterparts of the battery management system and is used for 

the efficient working of all associated systems [15-17]. It is 

one of the crucial factors for managing the health and pre-

dicting the state of the battery [6, 18]. Hence, for an effective 

battery management system, the two critical parameters are 

the estimation of the state of health of the battery and the 

prediction of its remaining useful life [19, 20]. Predicting the 

battery's remaining useful life is vital to prevent possible 

accidental damages and limit the risks in Electric Vehicles 

[21]. 

Out of the numerous research studies being carried out on 

the prediction of the remaining useful life of the battery, 

cur-rent research mainly elucidates three techniques for pre-

dicting the remaining useful life of the battery: model-based, 

da-ta-driven and hybrid methodology. The mechanism-based 

and empirical-based methods are subdivisions of the mod-

el-based method, which is based on the prediction of the re-

maining useful life of the battery, which is mainly used in 

conjunction with the Kalman filter and particle filter. The 

model is primarily based on the life prediction of the battery's 

various parameters, such as a change in impedance, electro-

chemical reaction, and the material's properties [6, 22]. The 

data-based model utilizes the prediction of the battery's life 

mainly by reference to the charge-discharge characteristics of 

the battery. Multilayer Perceptron (MLP) is a tool based on a 

data-based model. The hybrid method is also widely used to 

predict the remaining functional life of the battery. It is more 

accurate since it combines model-based and data-driven 

methodology [6]. 

The battery's good health ensures continuous power deliv-

ery to the required devices. Thus, regulating the battery per-

formance is crucial for getting maximum output power from 

the required loads. If we can predict the precise life of the 

battery, we can make a replacement strategy. Hence, the bat-

tery can be replaced in advance, ensuring proper appliance 

operation. 

The battery's remaining useful life can be predicted using a 

data-based Multilayer Perceptron (MLP) model. Instead of 

using analytical and mathematical formulations, MLP has the 

peculiar feature of learning from past experiences and in-

stances and is suitable for variable atmospheres [23]. MLP has 

a wide range of applications and day-by-day growing demand 

in forecasting problems due to its superiority and reliability 

compared to the other forecasting techniques. The available 

data on the battery is used to model the trend of the deterio-

ration of the battery over time. With the data available and the 

modelling, the remaining useful life of the battery can be 

predicted so that it can be replaced in time, thereby ensuring 

the reliable supply to the appliances as per the requirements. 

In controlling the health and determining the status of the 

health of a battery, it is critical to accurately anticipate the 

Remaining Useful Life (RUL) of a battery. 

In this study, the authors aim to predict the remaining useful 

life of the Lithium-Ion battery using MLP. The context of this 

study is: 

i. Lithium ions batteries are mostly used in various ap-

plications and industries due to its high-power density 

compared to other commercially available batteries. 

ii. The capacity of lithium-ion battery degrades over time 

after each charging and discharging cycle. 

iii. For timely replacement and maintenance of batteries, in 

order to improve system reliability prediction of re-

maining useful life of the battery is active research area. 

Therefore, in this context identified research problems are 

explained below: 

i. For prediction of remaining useful life experi-

ence-based method, physics (model) based method and 

data driven methods are used. 

ii. Previous problem is applied in solving similar or new 

problem with expert knowledge and engineering expe-

rience in experience-based approach. 

iii. Physics based models are not suitable for complex 

system due to cumbersome mathematical modelling and 

lack of understanding of battery failure modes. 

iv. Data driven approach are solely dependent on historical 

data and does not require detail mathematical model of 

battery degradation mechanism. 

v. However, in data driven approach for there is need re-

liable and accurate model that provides best estimate of 

remaining useful life of battery.  

The contribution of this paper in addressing aforemen-

tioned research problems are: 

i. Proposes multilayer perceptron model with sliding 

window approach in preparing the data for training. 

ii. Utilizes capacity degradation data of all battery sets for 

training the model in order to obtain overall nature of 

capacity degradation curve. 

iii. Validates the proposed model on NASA Ames Prog-

nostics Center of Excellence (PCoE) battery dataset. 

iv. Compares the performance of proposed model with 
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other data driven model applied on same battery data 

set. 

v. Identifies future research direction for the proposed 

model.  

This section introduces the Lithium-Ion battery and its 

features when compared with other types of batteries, the need 

for prediction of the remaining useful life of the battery for 

continuous and reliable delivery of power to the loads, 

methods of predicting the life of the batteries and merits, uses 

and applications of MLP in the prediction of the life of the 

battery. Section II presents the literature study on the predic-

tion of the remaining useful life of the batteries to date 

through various techniques. Section III focuses on the meth-

odology followed in this study for the prediction of the re-

maining life of the battery. Section IV illustrates the model-

ling and analysis for the research work. Section V elucidates 

the results obtained and validation/discussion of the results 

with a similar type of study. Section VI shows the study's 

conclusion and recommendations. Section VII presents the 

bibliography of the research. 

2. Literature Review 

Reference [24] elucidated that monitoring of the state of 

health of battery is very mandatory. The prediction of the 

remaining useful life of the battery was performed using a 

novel approach. The method proposes a new health indicator 

of the battery, changing rate of temperature (TR) for the es-

timation of state of health of the battery. This technique uti-

lized a binary linear regress model for the analysis of the 

remaining useful life of the battery. 

The research paper [6] employed hybrid methodology 

combining broad learning system with relevance vector 

ma-chine for predicting the remaining useful life of the battery. 

Both the data-based, and model-based technique was implied 

for the estimation. The study also compared the accuracy with 

the other algorithms. 

The reference paper [25] combined two computational 

models, SVR and MLP, to predict the accuracy elevation. The 

NASA Lithium-ion battery dataset was employed to verify the 

proposed methodology's superiority. The NASA real-lifecycle 

dataset helps evaluate the proposed method with high ac-

cu-racy compared with traditional approaches and method-

ologies [26]. 

Traditional approaches for the prediction of remaining 

useful life of the battery by traditional unscented Kalman 

Filtering (UKF) method had some problems due to which an 

improved UKF method is used to predict the remaining useful 

life of the battery [27]. Reference conference proceeding [28] 

utilizes a modified extend Kalman filter to predict the 

re-maining useful life of the battery. A data-driven method 

was deployed to predict the battery's remaining useful life 

using the Frisch Scheme-based Bias Compensating Recursive 

Least Squares (FBCRLS) algorithm [29]. 

The remaining useful life of lithium-ion batteries can also 

be predicted through the deployment of a novel method, that 

combines Kalman filter and PSO based particle filtering. This 

technique improves the accuracy over standard particle 

fil-tering and also mitigates the degradation of particles be-

cause of particle resampling [20]. The article [7] used a new 

ap-proach to predicting the remaining useful life (RUL) of 

Lithium-ion batteries with Li(NiMnCo)O2 cathode. The 

proposed method used an improved unscented particle filter 

(UPF) to account for capacity diving in the later stages of the 

capacity degradation curve. Key aspects of the paper include 

presenting a new empirical model that outperforms commonly 

used UPF models; incorporating Gamma distribution noise in 

the state space equations to avoid potential curve shifting 

during the prediction process; preprocessing the training data 

to reduce residual error and improve the quality of predictions. 

The proposed method was validated through experiments that 

demonstrate improved prediction performance under various 

working conditions. 

The conference article [30] employs Time Window and 

Gradient Boosting Decision Trees for the prediction of re-

maining useful life of lithium-ion battery. A new data-driven 

approach was introduced for system prognostics and health 

management (PHM) using deep convolutional neural 

net-works (DCNN) [18]. The traditional PHM method re-

quired prior knowledge of component degradation, but this 

new approach eliminated the need for expertise by using raw, 

normalized data as inputs to the network. The proposed 

method was tested on the popular C-MAPSS dataset and 

achieved high accuracy in RUL estimation. The results were 

compared with other popular approaches and demonstrated 

the superiority of the proposed data-driven prognostic method. 

This study suggested a new and promising approach for PHM. 

The battery's remaining useful life can also be predicted 

using the XBoost algorithm based on a CART classification 

and regression tree [31]. This is an alternative approach to 

empirical selection. To maximise estimation accuracy, 

XGBoost integrates CART-driven methods by merging 

sup-port vector regression and long short-term memory, 

which was proposed in reference [31]. 

The research article [24] combined an improved particle 

filter with sliding window gray model to predict the remaining 

useful life of the lithium-ion battery. The battery test setup 

was designed, and various experiments at different tempera-

tures, such as accurate capacity measurement and dynamic 

loading profiles test, were also conducted. The resampling 

method of the standard particle filter was improved through 

the linear optimisation of resampling technology. This tech-

nique produced higher accuracy when compared with the 

standard particle filter. Two types of batteries were employed 

for the study to demonstrate the effectiveness of the proposed 

methodology. 

ANN was deployed to predict battery performance by in-

vestigating charge-discharge characteristics for 50 cycles. The 

battery consisted of a single input layer corresponding to a 

single input and a hidden layer with three neurons that 
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pro-duced their outputs with two neurons [23]. It was clearly 

shown that ANN could estimate the life cycle of a Li-ion cell 

using a CoO anode. 

A new RUL estimation method was presented using a 

hy-brid CNN-RNN model [32]. Unlike traditional methods, 

the proposed approach did not require setting thresholds and 

accurately predicted RUL. The hybrid model extracted local 

features and captured degradation processes, leading to 

im-proved results compared to MLP, SVR, and CNN on the 

NASA C-MAPSS turbofan engine dataset. 

The assessment of the remaining useful life of the battery is 

a prime concern as it assists in the timely replacement of the 

battery without causing any disturbances in the power deliv-

ery to the required appliances. For this purpose, MLP is one of 

the accurate tools that helps in the projection of life with high 

accuracy. The model-based method of the remaining useful 

life projection involves fitting the degradation curve of the 

battery and modelling it mathematically for the elaboration of 

the physical properties. The data-driven method analyses the 

historical data. Various deep-learning techniques have been 

used to predict the remaining useful life of the batteries. 

3. Methodology 

The modelling through the application of MLP can be 

visualised as one of the black boxes that links the input with 

that of the output data. LPs are trained through various input 

data corresponding to the output data. Multiple factors, such 

as architecture, training algorithm, and transfer function, 

affect and influence the ANN'. The number of layers (input 

layer, hidden layer, and output layer) in MLP and the number 

of neurons in each layer are also crucial factors. The input and 

output parameters directly reflect the number of neurons in 

the input and output layer. Sliding window approach is used 

for preparation of training data in this work. The detail ar-

chitecture of the MLP network used in this work is presented 

in Figure 1(a). The detailed methodology of the study work 

using this MLP architecture presented in Figure 1(b). 

  
Figure 1. (a). Architecture of MLP model; (b). Flowchart showing the methodology of the study. 

3.1. Sequence Generation 

In battery capacity prediction, sequence generation is a 

pre-processing step that helps prepare the data for training the 

model. The capacity of a lithium battery can be represented as 

a time series, which typically has an overall decreasing trend. 

To use this data for training a model, it must be transformed 

into a format that can be fed into the model. 

The sliding window technique is used to convert the se-

quence of battery capacity into training data. A specific size 

window (defined by the window size parameter) is created 

and moved along the sequence from the start to the end. For 

each window position, the values within the window are used 

as input features (x), and the value immediately following the 

window is used as the label (y). 

For example, consider the sequence (1, 2, 3, 4, 5) and a 

window size of 3. The training data and labels generated using 

Presentation and preprocessing of dataset

Sequence Generation of Battery Capacity

Generation of training and test sets

Defining Network

Defining Evaluation Methods (MAE, 
RMSE, RE) and Training Functions

Training the Model

Quantitative Assessment from the 
Evaluation Methods Used

Qualitative Assessment from the result 
predicted with actual experimental output
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the sliding window method would be (1, 2, 3, 4) and (2, 3, 4, 

5). These pairs of input features and labels can be used to train 

the model to predict the next value in the sequence based on 

the previous values. 

This sequence generation method enables the model to 

learn the dependencies between the values in the sequence 

and make predictions based on these dependencies. It is 

commonly used in time series prediction problems, such as 

battery capacity prediction. 

3.2. Generate Training Set and Test Set 

Once the sequence has been generated using the sliding 

window method, the next step is to split the data into training 

and test sets. The goal of this split is to evaluate the model's 

performance on unseen data. The model is trained on the 

training data and tested on the test data. In this case, the data 

from three sets of Lithium-Ion batteries is used to create the 

training set and the remaining data set is used as the test set. 

This approach is called leave-one-out evaluation, as one set of 

data is left out and used as the test set, while all other data is 

used for training. Splitting the data into training and test sets is 

relatively simple and provides an essential evaluation of the 

model's performance. However, it is important to remember 

that the evaluation results may be sensitive to the specific 

chosen test set. In some cases, it may be beneficial to use a 

more sophisticated method of splitting the data, such as k-fold 

cross-validation, to evaluate the model's performance more 

robustly. 

3.3. Definition of Network 

This work defines a neural network using the PyTorch „nn‟ 

module. The network is called "Net". The Net class has two 

constructor arguments: feature size and hidden size. Feature 

size is the size of the input layer, and hidden size is a list of 

integers representing the size of each hidden layer. A linear 

transformation is applied for each layer, followed by ReLU 

activation. In this network, the forward method implements 

the forward pass of the network, taking an input vector as 

input. It passes the input through the initial layer and then 

through the other hidden layers using a „for‟ loop. Finally, the 

output of the final hidden layer is passed through the last 

linear layer to produce the final prediction. The prediction is 

then returned as the output of the forward pass. 

3.4. Training and Evaluation 

The machine learning model is repetitively trained, each 

time with a different random seed, and its performance is 

evaluated using three metrics: RE (relative error), MAE (mean 

absolute error), and RMSE (root mean squared error). 

The parameters such as window size, Epoch, learning rate, 

feature size, hidden size, and weight decay are used as hy-

per-parameters to control the model. The provided hy-

per-parameters can train the model using a suitable training 

function. The function returns lists of evaluation metrics for 

each epoch. These lists of metrics are then aggregated to 

obtain the mean values across all epochs and seeds. Finally, 

the mean and standard deviation of the aggregated metric 

values can be obtained. 

The evaluation parameters are obtained as follows: 

Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑁
∗ ∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖 −  𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝑁
𝑖=1 )       (1) 

Root Mean Square Error (RMSE) 

𝑅𝑀𝑆 = √
1

𝑁
∗ ∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖)2𝑁

𝑖=1
     (2) 

where N is the number of samples, actuali is the actual value 

of the i
th

 sample, and predictedi is the predicted value of the i
th

 

sample. 

Relative Error (RE) 

𝑅𝐸 =
|𝑅𝑈𝐿𝑝𝑟𝑒𝑑  – 𝑅𝑈𝐿𝑡𝑟𝑢𝑒|

𝑅𝑈𝐿𝑡𝑟𝑢𝑒
              (3) 

3.5. Quantitative and Qualitative Analysis 

Finally, after completing the model's training, the program 

outputs the value of the evaluation parameters, from which the 

quantitative relationship between the actual and predicted 

parameters can be evaluated. The plot of the actual and pre-

dicted data elucidates the quality of the neural network model. 

3.6. Algorithm for Prediction of RUL from 

NASA Dataset 

The algorithm for the prediction of RUL from the NASA 

Dataset is enumerated below: 

1. Define a function that takes in a MATLAB file and 

loads its data into Python as a list of dictionaries. 

2. Define a function that takes in the loaded data and re-

turns the discharge cycles and capacities of the batteries. 

3. Define a function that takes in the loaded data and the 

type of battery data (charge or discharge) and returns the 

relevant data. 

4. Load the data for the batteries B0005, B0006, B0007, 

and B0018 and store it in a dictionary Battery. 

5. Define a function that builds a sequence, takes in a list 

of values and a window size, and returns sequences and 

targets for training an MLP. 

6. Define a function that takes in the data, battery name, 

window size, and train ratio and returns the training and 

testing data for the MLP. 

7. Define a battery model class inherited from PyTorch, 

„nn.Module‟ class. This class contains the definition of 

the MLP. 

8. Create instances of the „nn.Linear‟ layer to define the 
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MLP's architecture and the forward method in the bat-

tery model class. 

9. Define a loss function, an optimiser, and a metric for 

evaluation. 

10. Train the model on the training data by looping through 

the data and using the optimiser to update the model 

weights. 

11. Evaluate the trained model on the testing data and 

compute the mean absolute and root mean square errors. 

12. Plot the capacity degradation of the batteries and dis-

play the results. 

4. Modelling and Analysis 

4.1. Data Set Introduction and Features of 

Battery Dataset 

In this article, the NASA Ames Prognostics Center of Ex-

cellence (PCoE) battery datasets B0005, B0006, B007 and 

B0018 are taken for training and testing the MLP model to 

predict RUL. Four lithium-ion batteries are operated in the 

charge, discharge, and impedance modes at room temperature 

(24°C). The charging process occurs for each battery where a 

constant 1.5 A current is applied until the voltage reaches 4.2 

V. Then, constant voltage charging mode commences till the 

charging current reaches 20 mA. The second step involves 

discharging each battery, until its voltage reaches 2.7 V, 2.5 V, 

2.2 V and 2.5 V, respectively, under a constant current of 2 A. 

Finally, the impedance process uses electrochemical imped-

ance spectra scanned from 0.1 to 5 kHz. All four batteries are 

subjected to charge and discharge cycles, and the end-of-life 

(EOL) point is obtained for each battery when the capacity of 

each battery has been decreased by 30% of its nominal ca-

pacity, i.e. from 2 Ah to 1.4 Ah. 

The RUL prediction model was trained using this research 

study's charge and discharge test data. In this dataset, various 

types of data are included in addition to the charge and dis-

charge voltage and current throughout the battery cycle test-

ing. Although the reported impedance can indicate battery 

degradation or ageing, it is not consistently recorded 

throughout the data collection. However, the battery must be 

isolated from its host system, and the electrochemical im-

pedance spectrometer required for the studies is expensive. To 

accomplish RUL prediction, only data obtained during 

charging and discharging are used from all the battery data 

that could be gathered during the operation of an electric 

vehicle. This study attempts to eliminate the use of expensive 

equipment to determine battery degradation. 

Features must be extracted following the appropriate test 

conditions to predict the capacity at any battery cycle. Over 

time, with the growing number of battery cycles, the differ-

ences between charging curves became negligible. However, 

ageing has caused distinct alterations in the curves. For in-

stance, with the increase in the internal resistance, the con-

stant-voltage portion is gradually reduced during the dis-

charging period. As a result, the useable time has steadily 

declined. Figures 2-5 illustrates the current curve of batteries 

for 1, 75, and 125 charge cycles, respectively. Figures 6-9 

elucidates the voltage curve of the same batteries for 1, 75 and 

125 discharge cycles, respectively. The constant-voltage re-

gion has increased while the constant-current segment has 

shrunk with the number of cycles. Figure 10 depicts the ca-

pacity degradation of the four batteries over the numerous 

charging and discharging cycles. 

 
Figure 2. Charging curve of B0005 battery. 
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Figure 3. Charging curve of B0006 battery. 

 
Figure 4. Charging curve of B0007 battery. 
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Figure 5. Charging curve of B0018 battery. 

 
Figure 6. Discharging curve of B0005 battery for 1,75, and 125 discharge cycles. 
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Figure 7. Discharging curve of B0006 battery for 1,75, and 125 discharge cycles. 

 
Figure 8. Discharging curve of B0007 battery for 1,75, and 125 discharge cycles. 
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Figure 9. Discharging curve of B0018 battery for 1,75 and 125 discharge cycles. 

 
Figure 10. Comparison of Capacity Degradation Curves of Lithium-Ion Batteries. 
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4.2. Modality of Training a Multilayer 

Perceptron (MLP) Network 

The proposed technique trains the MLP network of the 

battery usage prediction for four different batteries. The 

network uses PyTorch, a Mean Squared Error (MSE) as a loss 

function, and the Adam Optimizer to minimise the loss. The 

program takes several parameters as input: 

1. LR: the learning rate for the Adam Optimizer. 

2. Feature size: the number of input features to the net-

work. 

3. Hidden size: a list representing the number of nodes in 

each hidden layer of the network. 

4. Weight decay: the weight decay term to be used in the 

Adam optimiser. 

5. Window size: the number of steps taken in the past that 

are used as input features. 

6. Epoch: the maximum number of training iterations to 

perform. 

7. Seed: the seed for the random number generator to en-

sure reproducibility. 

The program trains the network for each of the four bat-

teries and returns the following results: 

1. RE list: a list of the relative errors for each battery. 

2. MAE list: a list of the mean absolute errors for each 

battery. 

3. RMSE list: a list of each battery's root mean squared 

errors. 

4. Result list: a list of the final predicted values for each 

battery. 

The network training is performed in a loop for each of the 

four batteries. The names of the batteries are obtained from 

the battery list. The function is called for each battery to get 

the training and test data. The training data is then used to 

train the network using the MSE loss and the Adam optimiser. 

The script performs training for a specified number of epochs 

or until the change in loss between two consecutive epochs is 

within the converging criteria. 

This program consists of a training function for an MLP 

network for a time series prediction problem. It has hy-

per-parameters such as learning rate (LR), feature size, hidden 

size, weight decay, window size, and number of epochs. 

The function takes the input hyper-parameters, then loops 

through four different time series data stored in the Battery list 

and trains the MLP network for each time series data. For each 

time series data, the function calls the following function to 

get the train and test data and sets up the seed for reproduci-

bility. After that, the MLP network is initialised and optimised 

using the Adam Optimiser, which uses the mean squared error 

(MSE) loss function. 

The program then trains the network over the specified 

number of epochs. The input train data is normalised in each 

epoch and converted to PyTorch tensors. The network's output 

is compared with the actual output values, and the gradients 

are computed using the backpropagation algorithm. The op-

timiser is then applied to update the network parameters. 

After every 100 epochs, the program tests the test data by 

generating new time series points using the trained network. 

The evaluation metrics, such as mean absolute error (MAE), 

root mean squared error (RMSE), and relative error (RE), are 

computed. The training is stopped if the difference between 

consecutive losses is less than 1e
-5

. 

5. Validation, Results, and Discussions 

As leave-one-out evaluation is a technique used to measure 

the accuracy of a model, one data point is removed from the 

training set and used as the validation set. The model is then 

trained on the remaining data points and tested on the valida-

tion set. This process is repeated for each data point in the 

dataset so that each data point is used as the validation set 

once. By averaging the accuracy scores of each iteration, a 

more reliable evaluation of the model's accuracy is obtained. 

The model's stability is tested by running the evaluation with 

different seeds. The random seed is used to initialise the 

generator of a random number, which is used to shuffle the 

data and divide the data into folds. By changing the seed, 

different random partitions of the data are generated, and the 

model is trained and evaluated on different data each time. By 

averaging the results of other runs, the variability of the 

model's performance is reduced, and a more robust evaluation 

is obtained. This evaluation function obtains the list of relative 

errors, mean absolute errors, root mean squared errors and 

final predictions for each time series data. 

After training the neural network using one-out evaluation, 

i.e., taking three battery datasets as a training set and the 

remaining as a test set, the mean along with the standard 

deviation of Relative Error, Mean Absolute Error, and Root 

Mean Square Error of the predicted capacity degradation data 

is presented in Table 1 and Table 2. 

Table 1. Performance Metrics for Individual Battery. 

Battery Relative Error (RE) Mean Absolute Error (MAE) Root Mean Square Error (RMSE) 

B0005 0.0614 0.0608 0.0771 

B0006 0.9813 0.1217 0.1378 
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Battery Relative Error (RE) Mean Absolute Error (MAE) Root Mean Square Error (RMSE) 

B0007 0.3522 0.1253 0.1286 

B0018 0.2791 0.0033 0.0401 

Table 2. Overall Performance Metrics. 

Parameters Relative Error (RE) Mean Absolute Error (MAE) Root Mean Square Error (RMSE) 

Mean 0.4185 0.0852 0.0959 

Standard Deviation 0.0028 0.0034 0.0026 

 

It is observed that relatively more accurate predication is 

obtained for battery B0005 and battery B0018. By training the 

model with varying seeds, the prediction of RUL of the model 

has average RMSE of 0.0959 with standard deviation of 

0.0026 and average MAE of 0.0852 with standard deviation 

of 0.0034. 

The comparison between actual degradation curve ex-

tracted from experimental data of batteries B0005, B0006, 

B0007 and B0018 with the degradation curve predicted by the 

MLP model is presented in Figure 11 to Figure 14. Like-wise, 

Table 3 compares and contrasts the accuracy of the proposed 

model with other models.  

 
Figure 11. Prediction results for B0005 battery. 
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Figure 12. Prediction results for B0006 battery. 

 
Figure 13. Prediction results for B0007 battery. 
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Figure 14. Prediction results for B0018 battery. 

Table 3. Comparative Performance Analysis. 

References Algorithm Validation Features and Output Performance Metrics 

[33] FFNN 
NASA PCoE 

battery dataset 

Input- Voltage, capacity 

Output- RUL 
MAE- 29.4218 

[34] SVM 
NASA PCoE 

battery dataset 

Input- Voltage, current temperature, capacity 

and time 

Output- RUL 

RMSE- 0.2159 

MAE- 0.3108 

[35] EEMD and RVM 
NASA PCoE 

battery dataset 

Input- Capacity 

Output- RUL 

MSE- 4.497*10-5 and 

1.644*10-5 (for battery 5 

and 18) 

[36] 
Hybrid PSO and 

SVM 

NASA PCoE 

battery dataset 

Input- Discharge Cycle 

Output- RUL 
MSE- 0.0213 

[37] Linear Particle Filter 
NASA PCoE 

battery dataset 

Input- Impedance, charging cycle number, aging 

Output- RUL 
RMSE- 0.2902 

[38] 
Single Channel 

Profile based ANN 

NASA PCoE 

battery dataset 

Input- Voltage, current, capacity, temperautre 

Output- RUL 

RMSE- 1.5018 

MAE- 0.4884 

[38] 
Multi Channel Pro-

file Based ANN 

NASA PCoE 

battery dataset 

Input- Voltage, current, capacity, temperautre 

Output- RUL 

RMSE- 0.2917 

MAE- 0.1679 

[39] 
Deep Neural Net-

work 

NASA PCoE 

battery dataset 

Input- voltage, current, capacity, temeperature 

Output- RUL 
RMSE- 3.427 

Proposed 

Method 
MLP 

NASA PCoE 

battery dataset 

Input- Discharge cycle date, capacity 

Output- RUL 

RMSE- 0.0959 

MAE- 0.0852 
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The proposed method demonstrates superior performance 

compared to other RUL prediction algorithms, such as 

feed-forward neural networks, support vector machines, lin-

ear particle filters, single-channel profile-based ANNs, mul-

tichannel profile-based ANNs, and deep neural networks. 

However, hybrid algorithms have shown better results than 

the proposed method. This suggests that predicting RUL us-

ing proposed method is competitive and often surpasses most 

neural network algorithms. The integration of optimization 

techniques and hybrid approaches can further enhance the 

accuracy of this model. 

6. Conclusions and Recommendations 

The implementation of MLP seems promising when 

one-out evaluation is used from the experimental results on 

the NASA data set. However, the result does not entirely meet 

the expectations due to the following two factors: 

The battery capacity sequence contains many jump points 

(capacity regeneration phenomenon), particularly at the be-

ginning of the curve, making it challenging for the model to 

infer a reliable trend from the battery history to estimate the 

battery life. 

These data sequence deviations are significant. For instance, 

B0007 contains no data after 1.4 Ah, while B0018's data is 

relatively short and subject to extreme fluctuations, which 

makes it challenging for the model to identify commonalities. 

MLP can produce decent results if the data gap between the 

capacity curves is minimal, the variations are gradual, and 

there are enough experimental data points. 

For future work, it is recommended that MLP be tested on 

another available dataset with enough experimental results to 

train the MLP. Moreover, laboratory experiments can be done 

to produce enough datasets for the lithium-ion battery, which 

can be later incorporated into the battery management system. 

Alternates to MLP, hybrid or novel prediction approach can be 

explored to predict the RUL of Lithium-ion batteries with 

limited and chaotic data. 

Abbreviations 

ANN Artificial Neural Network 

EEMD Ensemble Empirical Mode Decomposition 

EV Electric Vehicle 

FFNN Feed Forward Neural Network 

MAE Mean Average Error 

SVM Support Vector Machine 

SCI Single Channel Input 

MCI Multi-Channel Input 

MLP Multi-Layer Perceptron 

MSE Mean Square error 

PF Particle Filtering 

PSO Particle Swarm Optimization 

RE Relative Error 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

RUL Remaining Useful Life 

RVM Relevance Vector Machine 
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